Basic Mechanisms of Disease and Potential Therapeutic Strategies

With $245,000 in grants from FRAXA Research Foundation, Dr. Stephen Warren and his lab at Emory University studied all aspects of Fragile X syndrome, from the mechanisms of repeat expansion to high-throughput drug screens in the Drosophila model of Fragile X. The Warren lab made the original discovery of the Fragile X gene, FMR1, in collaboration with the Nelson and Oostra labs, and is recognized internationally as a leader in molecular genetics. Recent projects include establishment of induced pluripotent stem cell lines from Fragile X patients, and determination of other forms of mutation in the Fragile X gene, other than the most common trinucleotide repeat expansion.

Read more

Using Fenobam to Reduce APP and Abeta in Fragile X Mice

James Malter, at University of Wisconsin-Madison, FRAXA research grant

With a $130,000 grant from FRAXA Research Foundation over 2008-2009, Drs. James Malter and Cara Westmark at the University of Wisconsin studied the relationship between the Fragile X protein FMRP and APP, a protein important to the pathology of Alzheimer’s Disease. APP may also contribute to the pathology of Fragile X, and its major metabolite, Aß, may contribute to abnormal protein synthesis via a positive feedback loop. This project sought to restore normal dendritic protein synthesis in Fragile X mice by breaking into this loop.

Read more

Sleep and Circadian Rhythms in Fragile X Mutant Drosophila

Ravi Allada, MD, at Northwestern University, FRAXA research grant

With an $80,000 grant from FRAXA Research Foundation over 2 years, Dr. Ravi Allada and his team studied at Northwestern University sleep behaviors in Fragile X fruit flies. These fruit flies are useful for several important reasons; not only do they have a good cognitive phenotype, they also have a clear disturbance of circadian rhythms. This is an important model for human hyperactivity and sleep disorders, and this group studied the underlying mechanisms in an effort to find treatments for the human conditions.

Read more

FRAXA Contributes $10,000 to NIH grant to Seaside Therapeutics

Randall Carpenter, MD, at Massachusetts Institute of Technology, FRAXA research grant

Randy Carpenter, MD Principal Investigator with Mark Bear, PhD, MIT Co-Investigator (2007) conducted a clinical development of mGluR5 antagonists to treat Fragile X Syndrome and Autism. Seaside Therapeutics received a major grant from the NIH, with additional funding from FRAXA and Cure Autism Now (CAN) to develop STX107, a selective mGluR5 antagonist, as a treatment for Fragile X. Unfortunately, Seaside has since discontinued development of STX107.

Read more

Electrophysiological, Biochemical and Immunohistochemical Characterization of Kv3.1 in Auditory Brainstem Nuclei in the Fragile X Knockout Mouse

Leonard Kaczmarek, PhD

With $80,000 in funding from FRAXA over several years, the Yale University team of Leonard Kaczmarek, PhD showed that loss of FMRP leads to an increased Kv3.1 potassium currents. This change impairs timing of action potentials in auditory neurons (and likely others throughout the brain).

Read more

Hypothalamic Pituitary Adrenal (HPA) Axis Dysregulation in Fragile X Syndrome

Carolyn-Beebe-Smith

The hypothalamic pituitary adrenal (HPA) axis is our central stress response system. FRAXA Research Foundation awarded Dr. Carolyn B. Smith $62,000 in funding in 2005 to explore the HPA axis in Fragile X mice. The results of their study indicate that, in FVB/NJ mice, the hormonal response to and recovery from acute stress is unaltered by the lack of Fragile X mental retardation protein. Results published.

Read more

Defining Functional Domains of FMRP and Uncovering its Partners via Large Scale Mutagenesis in Drosophila

Yong Zhang, PhD, at Chinese Academy of Sciences, FRAXA research grant

With $80,000 in funding from FRAXA Research Foundation in 2005 and in 2006, Dr. Yong Zhang and his team at the Chinese Academy of Sciences developed a way to find genes that suppress the Fragile X gene. FRAXA grants $40,000 (2006) and $40,000 (2005) by Xinda Lin show that FMRP is a widely expressed RNA-binding protein involved in RNA transport and translation. Intensive studies in the last decade have demonstrated that FMRP contains four RNA binding domains, but their actual functions are mostly untested. Meanwhile, a dozen or so protein partners and hundreds of mRNA targets interacting with FMRP have been identified, but again their functions are poorly understood.

Read more