Developing Fragile X Treatments in Fruit Flies and Mice

With a $380,000 grant from FRAXA Research Foundation from 2005-2009, Drs. Sean McBride, Tom Jogens, and Catherine Choi studied one of the most important aspects of FRAXA’s research; the preclinical validation of potential therapeutic strategies. Many labs have found new leads for treatment. However, very few have the capacity to test new drugs in the mouse model to establish efficacy rigorously enough to lead to clinical trials. The McBride lab (in a broad collaboration with the Choi, Jongens, and Skoulakis groups) aims to do just that. Results published.

Sean McBride, PhD, Albert Einstein College of Medicine, FRAZA research grant
$380,000 Grant
Sean McBride, MD, PhD
Principal Investigator
Tom Jongens, PhD
Co-Principal Investigator
Catherine Choi, PhD
Co-Principal Investigator
Rowan University Medical School
2008-2009 FRAXA Research Grant
$240,000
$140,000 over 2 Years (2005-2006)

Results of Dr. McBride’s work can be found here.

Examining Cognitive Dysfunction in the Drosophila Model of Fragile X Syndrome

1/1/2006

Fragile X syndrome is the most common inherited form of intellectual disability, but few medications exist to help Fragile X patients. In a fruit fly model of the disease, researchers from the University of Pennsylvania School of Medicine and their colleagues have shown that it is possible to reverse some of the symptoms of the disorder using drugs that dampen specific neuronal overactivity. Their findings appeared in the March 3, 2005 issue of Neuron, and in Newsweek Magazine.

With further funding from FRAXA, Sean McBride and colleagues performed biochemical studies to investigate the effects of these treatments on levels of relevant proteins, to fully understand how the drugs are having their effects. They will evaluate learning and memory of aged fruit flies to determine if prolonged treatments that restore memory in young adulthood continue to be effective in elderly flies. Already they have preliminary evidence of increased cognitive deficits in older Fragile X flies and that these deficits can be prevented with drug treatments.

They also tested the effects of these treatments in FMR1 knockout mice, specifically studying the effects of mGluR antagonists, lithium, and other drugs on the enhanced mGluR-dependent long-term depression phenotype in the Fragile X mice.

Global Leader in Fragile X Research

FRAXA-funded researchers around the world are leading the way towards effective treatments and ultimately a cure.

Explore Current Research Grants
Help Fund the Cure

Global Leader in Fragile X Research

FRAXA-funded researchers around the world are leading the way towards effective treatments and ultimately a cure.

Explore Current Research Grants
Help Fund the Cure